ISSN 1600-5368

Bis[benzyl N'-(1H-indol-3-ylmethylene)hvdrazinecarbodithioato- $\kappa^2 N'.S$]nickel(II) N,N-dimethylformamide disolvate

Hamid Khaledi, Hapipah Mohd Ali and Seik Weng Ng*

Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 15 November 2008; accepted 19 November 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.040; wR factor = 0.094; data-to-parameter ratio = 13.8.

In the title compound, $[Ni(C_{17}H_{14}N_3S_2)_2] \cdot 2C_3H_7NO$, the Ni atom (site symmetry $\overline{1}$) is N,S-chelated by two deprotonated Schiff base anions in a distorted square-planar geometry. The dihedral angle between the aromatic ring planes within the ligand is 86.37 (13)°. In the crystal structure, an N-H···O hydrogen bond links the complex to the dimethylformamide solvent molecule.

Related literature

For other square-planar nickel dithiocarbazates, see: Ali et al. (2000); Tian et al. (1996a,b); Xue et al. (2003); Zhang et al. (2004); Zhu et al. (2000).

Experimental

Crystal data $[Ni(C_{17}H_{14}N_3S_2)_2] \cdot 2C_3H_7NO$

 $M_r = 853.77$

Monoclinic, $P2_1/c$	Z = 2
a = 10.3808 (3) Å	Mo $K\alpha$ radiation
b = 20.0219 (7) Å	$\mu = 0.75 \text{ mm}^{-1}$
c = 10.7831 (3) Å	T = 100 (2) K
$\beta = 117.921 \ (2)^{\circ}$	$0.12 \times 0.12 \times 0.06 \text{ mm}$
V = 1980.3 (1) Å ³	
Data collection	

Bruker SMART APEX CCD 13342 measured reflections diffractometer 3481 independent reflections Absorption correction: multi-scan 2615 reflections with $I > 2\sigma(I)$ (SADABS; Sheldrick, 1996) $R_{\rm int} = 0.062$ $T_{\min} = 0.916, T_{\max} = 0.957$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.040$ 252 parameters $wR(F^2) = 0.094$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.50 \ {\rm e} \ {\rm \AA}^-$ S = 1.03 $\Delta \rho_{\rm min} = -0.29 \text{ e} \text{ Å}^{-3}$ 3481 reflections

Table 1

Selected bond lengths (Å).

Ni1-N2	1.916 (2)	Ni1-S1	2.1770 (7)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: pubCIF (Westrip, 2008).

We thank the University of Malaya for funding this study (Science Fund grants 12-02-03-2031, 12-02-03-2051).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2849).

References

- Ali, M. A., Mirza, A., Butcher, R. J. & Rahman, M. (2000). Transition Met. Chem. 25, 430-436.
- Barbour, L. J. (2001), J. Supramol. Chem. 1, 189-191.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Tian, Y.-P., Duan, C.-Y., Lu, Z.-L., You, X.-Z., Fun, H.-K. & Kandasamy, S. (1996a). Polyhedron, 15, 2263-2271.
- Tian, Y.-P., Duan, C.-Y., Lu, Z.-L., You, X.-Z. & Huang, X.-Y. (1996b). J. Coord. Chem. 38, 219-226.
- Westrip, S. P. (2008). publCIF. In preparation.
- Xue, Z.-M., Zhang, X.-J., Tian, Y.-P., Wu, J.-Y., Jiang, M.-H. & Fun, H.-K. (2003). Chin. J. Struct. Chem. 22, 265-269.
- Zhang, M.-L., Tian, Y.-P., Zhang, X.-J., Wu, J.-Y., Zhang, S.-Y., Wang, D., Jiang, M.-H., Chantrapromma, S. & Fun, H.-K. (2004). Transition Met. Chem. 29, 596-602.
- Zhu, X.-H., Chen, X.-F., Zhang, Y., You, X.-Z., Tan, W.-L., Ji, W., Vittal, J. J., Tan, G.-K. & Kennard, C. H. L. (2000). New J. Chem. 24, 419-423.

supplementary materials

Acta Cryst. (2008). E64, m1615 [doi:10.1107/S1600536808038580]

Bis[benzyl N'-(1*H*-indol-3-ylmethylene)hydrazinecarbodithioato- $\kappa^2 N'$,S]nickel(II) N,N-dimethyl-formamide disolvate

H. Khaledi, H. Mohd Ali and S. W. Ng

Comment

For related structures, see: Ali et al. (2000); Tian et al. (1996a,b); Xue et al. (2003); Zhang et al. (2004); Zhu et al. (2000).

Experimental

Benzyl (1*H*-indol-2-ylmethylene)hydrazinecarbodithioate ethanol hemisolvate (2 mmol, 0.65 g) was dissolved in ethanol (30 ml) along with several drops of triethylamine. To the resulting clear solution was added an ethanol solution (10 ml) containing 1 mmol (0.25 g) of nickel acetate tetrahydrate. The mixture was heated for an hour. The product that separated was recrystallized from DMF to yield brown blocks of (I).

Refinement

Hydrogen atoms were placed at calculated positions (C–H = 0.95–0.99Å, N–H = 0.88Å) and refined as riding with U(H) = 1.2–1.5 times $U_{eq}(C,N)$.

Figures

Fig. 1. View of (I) at the 70% probability level. Hydrogen atoms are drawn as spheres of arbitrary radius. The unlabelled atoms are generated by the symmetry operation (1-x, 1-y, 1-z) and the hydrogen bonds are shown as dashed lines.

$Bis[benzyl \ N'-(1 \ H-indol-3-ylmethylene) hydrazine carbodithio ato- \ \kappa^2 \ N', S]nickel(II) \ N, N-dimethyl formamide disolvate$

Crystal data	
[Ni(C ₁₇ H ₁₄ N ₃ S ₂) ₂]·2C ₃ H ₇ NO	$F_{000} = 892$
$M_r = 853.77$	$D_{\rm x} = 1.432 \ {\rm Mg \ m^{-3}}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 1450 reflections
a = 10.3808 (3) Å	$\theta = 2.2 - 22.7^{\circ}$
<i>b</i> = 20.0219 (7) Å	$\mu = 0.75 \text{ mm}^{-1}$
c = 10.7831 (3) Å	T = 100 (2) K
$\beta = 117.921 \ (2)^{\circ}$	Block, brown
$V = 1980.3 (1) \text{ Å}^3$	$0.12 \times 0.12 \times 0.06 \text{ mm}$

Z = 2

Data collection

Bruker SMART APEX CCD diffractometer	3481 independent reflections
Radiation source: fine-focus sealed tube	2615 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.062$
T = 100(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ω scans	$\theta_{\min} = 2.0^{\circ}$
Absorption correction: Multi-scan (SADABS; Sheldrick, 1996)	$h = -12 \rightarrow 12$
$T_{\min} = 0.916, \ T_{\max} = 0.957$	$k = -23 \rightarrow 23$
13342 measured reflections	$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H-atom parameters constrained
$wR(F^2) = 0.094$	$w = 1/[\sigma^2(F_o^2) + (0.0396P)^2 + 0.2888P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} = 0.001$
3481 reflections	$\Delta \rho_{max} = 0.50 \text{ e} \text{ Å}^{-3}$
252 parameters	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

Primary atom site location: structure-invariant direct Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Ni1	0.5000	0.5000	0.5000	0.01710 (15)
S1	0.48640 (8)	0.60841 (4)	0.48343 (8)	0.0236 (2)
S2	0.38426 (8)	0.70431 (4)	0.62163 (8)	0.0234 (2)
01	0.1755 (3)	0.56685 (12)	1.1091 (2)	0.0472 (7)
N1	0.2818 (3)	0.49406 (11)	0.9618 (2)	0.0220 (6)
H1	0.2520	0.5191	1.0105	0.026*
N2	0.4331 (2)	0.51020 (11)	0.6371 (2)	0.0182 (5)
N3	0.3953 (2)	0.57357 (11)	0.6685 (2)	0.0192 (5)
N4	0.0849 (3)	0.57529 (12)	1.2634 (2)	0.0252 (6)
C1	0.2942 (3)	0.42563 (14)	0.9707 (3)	0.0192 (6)
C2	0.2658 (3)	0.38131 (15)	1.0548 (3)	0.0232 (7)
H2	0.2351	0.3967	1.1200	0.028*
C3	0.2842 (3)	0.31463 (15)	1.0393 (3)	0.0260 (7)
H3	0.2647	0.2832	1.0945	0.031*
C4	0.3308 (3)	0.29162 (15)	0.9445 (3)	0.0250 (7)
H4	0.3412	0.2450	0.9354	0.030*

C5	0.3621 (3)	0.33626 (15)	0.8636 (3)	0.0219 (7)
Н5	0.3955	0.3205	0.8005	0.026*
C6	0.3437 (3)	0.40438 (14)	0.8763 (3)	0.0187 (6)
C7	0.3625 (3)	0.46401 (14)	0.8099 (3)	0.0188 (6)
C8	0.3220 (3)	0.51697 (15)	0.8678 (3)	0.0223 (7)
H8	0.3227	0.5627	0.8443	0.027*
C9	0.4138 (3)	0.46239 (15)	0.7091 (3)	0.0198 (7)
Н9	0.4382	0.4191	0.6907	0.024*
C10	0.4193 (3)	0.62076 (14)	0.6009 (3)	0.0191 (6)
C11	0.3353 (3)	0.70343 (15)	0.7620 (3)	0.0245 (7)
H11A	0.4028	0.6726	0.8354	0.029*
H11B	0.3535	0.7487	0.8039	0.029*
C12	0.1817 (3)	0.68378 (14)	0.7277 (3)	0.0206 (7)
C13	0.0673 (3)	0.68232 (15)	0.5927 (3)	0.0259 (7)
H13	0.0838	0.6939	0.5159	0.031*
C14	-0.0716 (3)	0.66398 (16)	0.5687 (3)	0.0309 (8)
H14	-0.1490	0.6622	0.4754	0.037*
C15	-0.0977 (3)	0.64846 (16)	0.6793 (3)	0.0320 (8)
H15	-0.1930	0.6364	0.6627	0.038*
C16	0.0152 (3)	0.65049 (15)	0.8139 (3)	0.0291 (8)
H16	-0.0020	0.6398	0.8908	0.035*
C17	0.1540 (3)	0.66816 (15)	0.8379 (3)	0.0243 (7)
H17	0.2312	0.6696	0.9313	0.029*
C18	0.1381 (4)	0.54196 (18)	1.1919 (3)	0.0376 (9)
H18	0.1485	0.4950	1.2054	0.045*
C19	0.0701 (3)	0.64730 (15)	1.2501 (3)	0.0289 (8)
H19A	0.0755	0.6616	1.1658	0.043*
H19B	0.1489	0.6684	1.3329	0.043*
H19C	-0.0241	0.6606	1.2427	0.043*
C20	0.0490 (3)	0.54232 (15)	1.3634 (3)	0.0293 (7)
H20A	0.0590	0.4939	1.3579	0.044*
H20B	-0.0516	0.5531	1.3412	0.044*
H20C	0.1154	0.5578	1.4584	0.044*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ni1	0.0178 (3)	0.0178 (3)	0.0192 (3)	-0.0001 (2)	0.0116 (2)	-0.0001 (2)
S1	0.0326 (5)	0.0197 (4)	0.0292 (4)	0.0005 (3)	0.0234 (4)	0.0002 (3)
S2	0.0297 (5)	0.0183 (4)	0.0296 (4)	-0.0010 (3)	0.0201 (4)	-0.0016 (3)
O1	0.0752 (19)	0.0443 (17)	0.0405 (14)	0.0204 (13)	0.0424 (14)	0.0058 (12)
N1	0.0274 (14)	0.0212 (15)	0.0242 (13)	-0.0007 (11)	0.0178 (11)	-0.0028 (11)
N2	0.0186 (13)	0.0152 (14)	0.0220 (12)	0.0001 (10)	0.0106 (10)	-0.0005 (10)
N3	0.0197 (13)	0.0175 (14)	0.0223 (13)	0.0009 (10)	0.0114 (11)	-0.0031 (10)
N4	0.0265 (15)	0.0263 (16)	0.0239 (13)	0.0015 (11)	0.0129 (12)	-0.0056 (11)
C1	0.0192 (16)	0.0213 (17)	0.0180 (14)	-0.0012 (13)	0.0094 (12)	0.0003 (12)
C2	0.0225 (17)	0.0289 (19)	0.0212 (15)	-0.0016 (14)	0.0128 (13)	0.0023 (13)
C3	0.0232 (17)	0.030 (2)	0.0264 (16)	0.0009 (14)	0.0128 (14)	0.0100 (14)

supplementary materials

0.0229 (17)	0.0197 (17)	0.0319 (17)	0.0021 (13)	0.0123 (14)	0.0079 (13)
0.0188 (16)	0.0253 (18)	0.0229 (15)	0.0023 (13)	0.0110 (13)	0.0003 (13)
0.0129 (15)	0.0237 (18)	0.0205 (15)	0.0019 (12)	0.0088 (12)	0.0023 (12)
0.0172 (16)	0.0200 (17)	0.0203 (15)	-0.0010 (12)	0.0098 (13)	-0.0001 (12)
0.0243 (17)	0.0242 (18)	0.0217 (15)	-0.0019 (13)	0.0134 (13)	0.0033 (12)
0.0172 (16)	0.0201 (18)	0.0237 (16)	0.0008 (12)	0.0107 (13)	-0.0002 (12)
0.0162 (16)	0.0222 (17)	0.0183 (14)	-0.0012 (12)	0.0076 (12)	-0.0008 (12)
0.0304 (18)	0.0232 (18)	0.0263 (16)	-0.0054 (14)	0.0186 (14)	-0.0074 (13)
0.0251 (17)	0.0148 (16)	0.0282 (16)	0.0002 (13)	0.0177 (14)	-0.0055 (12)
0.0301 (19)	0.0247 (18)	0.0265 (17)	0.0025 (14)	0.0164 (15)	-0.0007 (13)
0.0224 (18)	0.032 (2)	0.0314 (18)	0.0053 (14)	0.0071 (15)	-0.0008 (15)
0.0232 (18)	0.031 (2)	0.044 (2)	0.0045 (14)	0.0177 (16)	0.0048 (15)
0.0322 (19)	0.0273 (19)	0.0366 (19)	0.0018 (14)	0.0234 (16)	0.0042 (14)
0.0246 (18)	0.0256 (18)	0.0264 (16)	-0.0007 (14)	0.0150 (14)	-0.0043 (13)
0.048 (2)	0.034 (2)	0.0333 (19)	0.0081 (17)	0.0206 (18)	-0.0021 (16)
0.034 (2)	0.028 (2)	0.0260 (17)	0.0037 (15)	0.0150 (15)	-0.0037 (14)
0.0300 (18)	0.029 (2)	0.0324 (18)	-0.0026 (14)	0.0177 (15)	-0.0049 (14)
	0.0229 (17) 0.0188 (16) 0.0129 (15) 0.0172 (16) 0.0243 (17) 0.0172 (16) 0.0162 (16) 0.0304 (18) 0.0251 (17) 0.0301 (19) 0.0224 (18) 0.0232 (18) 0.0322 (19) 0.0246 (18) 0.048 (2) 0.034 (2) 0.0300 (18)	$\begin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

Ni1—N2 ⁱ	1.916 (2)	C6—C7	1.451 (4)
Ni1—N2	1.916 (2)	С7—С8	1.391 (4)
Ni1—S1	2.1770 (7)	С7—С9	1.418 (4)
Ni1—S1 ⁱ	2.1770 (7)	C8—H8	0.9500
S1—C10	1.725 (3)	С9—Н9	0.9500
S2—C10	1.748 (3)	C11—C12	1.511 (4)
S2—C11	1.808 (3)	C11—H11A	0.9900
O1—C18	1.233 (4)	C11—H11B	0.9900
N1—C8	1.346 (3)	C12—C17	1.383 (4)
N1—C1	1.375 (3)	C12—C13	1.382 (4)
N1—H1	0.8800	C13—C14	1.390 (4)
N2—C9	1.306 (3)	С13—Н13	0.9500
N2—N3	1.416 (3)	C14—C15	1.377 (4)
N3—C10	1.287 (3)	C14—H14	0.9500
N4—C18	1.321 (4)	C15—C16	1.375 (4)
N4—C20	1.454 (4)	C15—H15	0.9500
N4—C19	1.450 (4)	C16—C17	1.385 (4)
C1—C2	1.395 (4)	С16—Н16	0.9500
C1—C6	1.404 (4)	С17—Н17	0.9500
C2—C3	1.370 (4)	C18—H18	0.9500
С2—Н2	0.9500	C19—H19A	0.9800
C3—C4	1.398 (4)	C19—H19B	0.9800
С3—Н3	0.9500	С19—Н19С	0.9800
C4—C5	1.390 (4)	C20—H20A	0.9800
C4—H4	0.9500	C20—H20B	0.9800
C5—C6	1.393 (4)	C20—H20C	0.9800
С5—Н5	0.9500		
N2 ⁱ —Ni1—N2	180.0	С7—С9—Н9	114.5

N2 ⁱ —Ni1—S1	94.36 (7)	N3—C10—S1	124.2 (2)
N2—Ni1—S1	85.64 (7)	N3—C10—S2	121.5 (2)
N2 ⁱ —Ni1—S1 ⁱ	85.64 (7)	S1—C10—S2	114.26 (16)
N2—Ni1—S1 ⁱ	94.36 (7)	C12—C11—S2	118.4 (2)
S1—Ni1—S1 ⁱ	180.0	C12—C11—H11A	107.7
C10—S1—Ni1	96.64 (10)	S2—C11—H11A	107.7
C10—S2—C11	104.76 (13)	C12—C11—H11B	107.7
C8—N1—C1	109.9 (2)	S2—C11—H11B	107.7
C8—N1—H1	125.1	H11A—C11—H11B	107.1
C1—N1—H1	125.1	C17—C12—C13	118.5 (3)
C9—N2—N3	112.2 (2)	C17—C12—C11	118.0 (2)
C9—N2—Ni1	126.4 (2)	C13—C12—C11	123.5 (3)
N3—N2—Ni1	121.46 (17)	C12—C13—C14	120.4 (3)
C10—N3—N2	111.9 (2)	C12-C13-H13	119.8
C18—N4—C20	121.8 (3)	C14—C13—H13	119.8
C18—N4—C19	119.9 (3)	C15—C14—C13	120.4 (3)
C20—N4—C19	118.2 (2)	C15—C14—H14	119.8
N1—C1—C2	129.6 (3)	C13—C14—H14	119.8
N1—C1—C6	107.8 (2)	C14—C15—C16	119.4 (3)
C2—C1—C6	122.6 (3)	C14—C15—H15	120.3
C3—C2—C1	117.2 (3)	C16—C15—H15	120.3
С3—С2—Н2	121.4	C15—C16—C17	120.2 (3)
C1—C2—H2	121.4	C15-C16-H16	119.9
C2—C3—C4	121.7 (3)	C17—C16—H16	119.9
С2—С3—Н3	119.2	C12—C17—C16	121.0 (3)
С4—С3—Н3	119.2	С12—С17—Н17	119.5
C5—C4—C3	120.7 (3)	С16—С17—Н17	119.5
C5—C4—H4	119.7	O1C18N4	125.3 (3)
C3—C4—H4	119.7	O1-C18-H18	117.3
C4—C5—C6	119.0 (3)	N4—C18—H18	117.3
C4—C5—H5	120.5	N4—C19—H19A	109.5
С6—С5—Н5	120.5	N4—C19—H19B	109.5
C5—C6—C1	118.8 (3)	H19A—C19—H19B	109.5
C5—C6—C7	134.5 (3)	N4—C19—H19C	109.5
C1—C6—C7	106.7 (2)	H19A—C19—H19C	109.5
C8—C7—C9	131.5 (3)	H19B—C19—H19C	109.5
C8—C7—C6	105.5 (2)	N4—C20—H20A	109.5
C9—C7—C6	123.0 (3)	N4—C20—H20B	109.5
N1—C8—C7	110.1 (3)	H20A—C20—H20B	109.5
N1—C8—H8	125.0	N4—C20—H20C	109.5
С7—С8—Н8	125.0	H20A—C20—H20C	109.5
N2—C9—C7	131.1 (3)	H20B—C20—H20C	109.5
N2—C9—H9	114.5		
N2 ⁱ —Ni1—S1—C10	177.84 (11)	C9—C7—C8—N1	-179.2 (3)
N2—Ni1—S1—C10	-2.16 (11)	C6—C7—C8—N1	0.2 (3)
S1—Ni1—N2—C9	-177.9 (2)	N3—N2—C9—C7	0.1 (4)
S1 ⁱ —Ni1—N2—C9	2.1 (2)	Ni1—N2—C9—C7	-178.5 (2)

supplementary materials

S1—Ni1—N2—N3	3.52 (18)	C8—C7—C9—N2	-2.8 (5)
81 ⁱ —Ni1—N2—N3	-176.48 (18)	C6—C7—C9—N2	177.9 (3)
C9—N2—N3—C10	177.8 (2)	N2-N3-C10-S1	1.1 (3)
Ni1—N2—N3—C10	-3.5 (3)	N2—N3—C10—S2	-179.25 (17)
C8—N1—C1—C2	179.3 (3)	Ni1—S1—C10—N3	1.2 (2)
C8—N1—C1—C6	-0.5 (3)	Ni1—S1—C10—S2	-178.47 (13)
N1—C1—C2—C3	178.4 (3)	C11—S2—C10—N3	6.4 (3)
C6—C1—C2—C3	-1.9 (4)	C11—S2—C10—S1	-173.95 (15)
C1—C2—C3—C4	0.7 (4)	C10—S2—C11—C12	-80.3 (2)
C2—C3—C4—C5	0.8 (4)	S2-C11-C12-C17	165.3 (2)
C3—C4—C5—C6	-1.2 (4)	S2-C11-C12-C13	-16.5 (4)
C4—C5—C6—C1	0.0 (4)	C17—C12—C13—C14	-1.5 (4)
C4—C5—C6—C7	-178.9 (3)	C11—C12—C13—C14	-179.7 (3)
N1—C1—C6—C5	-178.6 (2)	C12—C13—C14—C15	1.4 (5)
C2—C1—C6—C5	1.5 (4)	C13-C14-C15-C16	-0.7 (5)
N1—C1—C6—C7	0.6 (3)	C14-C15-C16-C17	0.1 (5)
C2—C1—C6—C7	-179.3 (3)	C13—C12—C17—C16	0.9 (4)
C5—C6—C7—C8	178.6 (3)	C11—C12—C17—C16	179.2 (3)
C1—C6—C7—C8	-0.5 (3)	C15-C16-C17-C12	-0.2 (5)
C5—C6—C7—C9	-2.0 (5)	C20-N4-C18-O1	-177.4 (3)
C1—C6—C7—C9	179.0 (2)	C19—N4—C18—O1	-1.6 (5)
C1—N1—C8—C7	0.2 (3)		

Symmetry codes: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…O1	0.88	1.86	2.739 (3)	175

Fig. 1